Statistical optimization of Pseudomonas putida (ATCC 49128) growth: Process variables response in hypoxic shake flasks using response surface methodology

AUTHORS

Mani Malam Ahmad,Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Abd. Aziz Mohd Azoddien,Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Mior Ahmad Khusairi bin Mohd Zahari,Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Mazrul Nizam bin Abu Seman,Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
Mohammed Saedi Jami,Faculty of Engineering, Department of Biotechnology Engineering, International Islamic University, Malaysia (IIUM), Gombak, 50728, Kuala Lumpur, Malaysia

ABSTRACT

Background: The modeling of Pseudomonas putida growth is facilitated due to its non-fastidious nature. Objective: This research was performed to develop a predictive model for the growth of P. putida in a shake flasks medium. Methods: A response surface methodology (RSM) was employed to predict the synergistic effects with a combination of nutrient concentration (4-16 g/l), agitation (140-200 rpm) and temperature (30-40 ºC) on P. putida (ATCC 49128) growth and cell biomass accumulation. The growth curves generated under different conditions were fitted using a nonlinear regression model equation. The relationship between the response and growth limiting variables were modelled using a face-centered central composite design (FCCCD) quadratic polynomial equation. Results: The predictive model was highly significant (p < 0.01), and the predicted values of the growth parameters obtained using the model equations were in agreement with the observed values (R2= 0.9840). The established model validation indices for describing the growth rate of P. putida were within the acceptable limit of bias (Bf) and accuracy factor (Af). Conclusion: Therefore, the predictive model further confirmed the versatility of P. putida to simple growth media within defined optimal physical operational parameters of simple batch mode.

 

KEYWORDS

Optimization, Pseudomonas putida, Growth, Shake flasks

REFERENCES

[1]    H. Rashedi, A. Izadi, M. E. Bidhendi, and H. Rashedi, “Optimization of Operational Parameters in Rhamnolipid Production by Pseudomonas aeruginosa MM1011 in a Miniaturized Shaken Bioreactor,” J. Appl. Biotechnol. Reports, vol. 2, no. 3, pp. 271–278, (2015).
[2]    D. Schultz and R. Kishony, “Optimization and control in bacterial lag phase.,” BMC Biol., vol. 11, no. 1, p. 120, (2013).
[3]    P. Fonseca, R. Moreno, and F. Rojo, “Growth of Pseudomonas putida at low temperature: Global transcriptomic and proteomic analyses,” Environ. Microbiol. Rep., vol. 3, no. 3, pp. 329–339, (2011).
[4]    I. Poblete-Castro, J. Becker, K. Dohnt, V. M. Dos Santos, and C. Wittmann, “Industrial biotechnology of Pseudomonas putida and related species,” Appl. Microbiol. Biotechnol., vol. 93, no. 6, pp. 2279–2290, (2012).
[5]    S. Sabir, M. Arshad, and S. K. Chaudhari, “Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications,” Sci. World J., vol. 2014, (2014).
[6]    J. I. J. & M. C. Roberto Avendaño, Nefertiti Chaves, Paola Fuentes, Ethel Sánchez, “Production of selenium nanoparticles in Pseudomonas putida KT2440,” Sci. Rep., vol. 6, no. October, pp. 1–9, (2016).
[7]    V. Thamilselvi and K. V Radha, “Synthesis of Silver Nanoparticles From Pseudomonas Putida Ncim 2650 in Silver Nitrate Supplemented Growth Medium and Optimization Using Response Surface Methodology,” Dig. J. Nanomater. Biostructures, vol. 8, no. 3, pp. 1101–1111, (2013).
[8]    S. K. Singh, S. K. Singh, V. R. Tripathi, S. K. Khare, and S. K. Garg, “Comparative one-factor-at-a-time, response surface (statistical) and bench-scale bioreactor level optimization of thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate,” Microb. Cell Fact., vol. 10, no. 1, p. 114, (2011).
[9]    D. Bas and I. H. Boyaci, “Modeling and optimization I: Usability of response surface methodology,” J. Food Eng., vol. 78, no. 3, pp. 836–845, (2007).
[10]  S. K. S. Patel, P. Mardina, D. Kim, S. Y. Kim, V. C. Kalia, I. W. Kim, and J. K. Lee, “Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas,” Bioresour. Technol., vol. 218, pp. 202–208, (2016).
[11]  S. J. (1984). P. of F. T. O. B. H. Standbury, P.F., Whitaker, A. and Hall, Principle of Fermentation, 2nd ed., vol. 53, no. 9. OXFORD: BUTTERWORTH HEINEMANN, (1984).
[12]  S. B. Momen, S. D. Siadat, N. Akbari, B. Ranjbar, and K. Khajeh, “Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b,” Jundishapur J. Microbiol., vol. In Press, no. In Press, (2016).
[13]  S. K. S. Patel, C. Selvaraj, P. Mardina, J. H. Jeong, V. C. Kalia, Y. C. Kang, and J. K. Lee, “Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization,” Appl. Energy, vol. 171, pp. 383–391, (2016).
[14]  J. P. Sheets, X. Ge, Y. F. Li, Z. Yu, and Y. Li, “Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate,” Bioresour. Technol., vol. 201, pp. 50–57, (2016).
[15]  J. R. Lobry, J. P. Flandrois, G. Carret, and A. Pave, “Monod’s bacterial growth model revisited,” Bull. Math. Biol., vol. 54, no. 1, pp. 117–122, (1992).
[16]  J. Monod, “The Growth of Bacterial Cultures,” Annu. Rev. Microbiol., vol. 3, no. 1, pp. 371–394, (1949).
[17]  A. Aziz, M. Azoddein, M. M. Ahmad, R. M. Yunus, N. Meriam, and N. Sulaiman, “Effect of Acclimatization Time to Microbial Cell Growth and Biosynthesis of Mesophilic Gammaproteobacterium , in Orbital Shake Flasks,” MATEC Web Conf., vol. 4003, no. 109, (2017).
[18]  J. G. Dorn, R. J. Frye, R. M. Maier, and A. P. P. L. E. N. M. Icrobiol, “Effect of Temperature , pH , and Initial Cell Number on luxCDABE and nah Gene Expression during Naphthalene and Salicylate Catabolism in the Bioreporter Organism Pseudomonas putida RB1353,” Appl. Environ. Microbiol., vol. 69, no. 4, pp. 2209–2216, (2003).
[19]  W. W. Zhou, Y. L. He, T. G. Niu, and J. J. Zhong, “Optimization of fermentation conditions for production of anti-TMV extracellular ribonuclease by Bacillus cereus using response surface methodology,” Bioprocess Biosyst. Eng., vol. 33, no. 6, pp. 657–663, (2010).
[20]  Y. Peng, Y. He, Z. Wu, J. Lu, and C. Li, “Screening and optimization of low-cost medium for Pseudomonas putida Rs-198 culture using RSM,” Brazilian J. Microbiol., vol. 45, no. 4, pp. 1229–1237, (2014).
[21]  S. Escobar, A. Rodriguez, E. Gomez, A. Alcon, V. E. Santos, and F. Garcia-Ochoa, “Influence of oxygen transfer on Pseudomonas putida effects on growth rate and biodesulfurization capacity,” Bioprocess Biosyst. Eng., vol. 39, no. 4, pp. 545–554, (2016).
[22]  Z. Z. and R. N. Md. Sakil Munna, “Influence of temperature on the growth of Drosophila melanogaster,” Stamford J. Microbiol., vol. 5, no. 1, pp. 9–12, (2015).
[23]  S. Srivastava, A. Yadav, K. Seem, S. Mishra, V. Chaudhary, and C. S. Nautiyal, “Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS,” Curr. Microbiol., vol. 56, no. 5, pp. 453–457, (2008).
[24]  T. Ross, “Indices for performance evaluation of predictive models in food microbiology,” J. Appl. Bacteriol., vol. 81, no. 5, pp. 501–508, (1996).
[25]  M. C. te Giffel and M. H. Zwietering, “Validation of predictive models describing the growth of Listeria monocytogenes,” Int. J. Food Microbiol., vol. 46, no. 2, pp. 135–149, (1999).

CITATION

  • APA:
    Ahmad,M.M.& Azoddien,A.A.M.& Zahari,M.A.K.M.& Seman,M.N.A.& Jami,M.S.(2018). Statistical optimization of Pseudomonas putida (ATCC 49128) growth: Process variables response in hypoxic shake flasks using response surface methodology. International Journal of Bio-Science and Bio-Technology, 10(3-4), 1-14. 10.21742/IJBSBT.2018.10.3-4.01
  • Harvard:
    Ahmad,M.M., Azoddien,A.A.M., Zahari,M.A.K.M., Seman,M.N.A., Jami,M.S.(2018). "Statistical optimization of Pseudomonas putida (ATCC 49128) growth: Process variables response in hypoxic shake flasks using response surface methodology". International Journal of Bio-Science and Bio-Technology, 10(3-4), pp.1-14. doi:10.21742/IJBSBT.2018.10.3-4.01
  • IEEE:
    [1] M.M.Ahmad, A.A.M.Azoddien, M.A.K.M.Zahari, M.N.A.Seman, M.S.Jami, "Statistical optimization of Pseudomonas putida (ATCC 49128) growth: Process variables response in hypoxic shake flasks using response surface methodology". International Journal of Bio-Science and Bio-Technology, vol.10, no.3-4, pp.1-14, Sep. 2018
  • MLA:
    Ahmad Mani Malam, Azoddien Abd. Aziz Mohd, Zahari Mior Ahmad Khusairi bin Mohd , Seman Mazrul Nizam bin Abu and Jami Mohammed Saedi. "Statistical optimization of Pseudomonas putida (ATCC 49128) growth: Process variables response in hypoxic shake flasks using response surface methodology". International Journal of Bio-Science and Bio-Technology, vol.10, no.3-4, Sep. 2018, pp.1-14, doi:10.21742/IJBSBT.2018.10.3-4.01

ISSUE INFO

  • Volume 10, No. 3-4, 2018
  • ISSN(p):2233-7849
  • ISSN(e):2208-9810
  • Published:Sep. 2018

DOWNLOAD